ASME SA 213 TP316L Stainless Steel Tube 316L Tube ASTM A213 TP316 316L Stainless Steel Tubes
Zhejiang Guanyu Stainless Steel Tube Co., Ltd is specialized manufacturer of 316L Stainless Steel Tubes according to ASME SA 213 / ASTM A 213, 316L Stainless Steel Tube are molybdenum-bearing austenitic stainless steel, which are more resistant to general corrosion and pitting corrosion, crevice corrosion than the conventional chromium-nickel austenitic stainless steel such as 304. 316L Stainless Steel also offer higher creep, stress-to-rupture, and tensile strength at elevated temperature. In addition to excellent corrosion resistance and strength properties, the Alloys 316 and 316L Cr-Ni-Mo alloys also provide excellent fabricability and formability which are typical of the austenitic stainless steel.
316L Stainless Steel Tubes is improved version of 304 Stainless Steel, with the addition of molybdenum and higher nickel content. The resultant Chemical composition of 316 gives the steel much increased corrosion resistance in aggressive environment. Molybdenum make the steel more resistant to pitting and crevice corrosion in chloride-contaminated media, sea water and acetic acid vapour. The lower rate of general corrosion in mildly corrosive environment give the steel good atmospheric corrosion resistance in polluted marine atmosphere, and because of low carbon percentage, can minimizing Intergranular corrosion attact.
316 316L Stainless Steel Tube offers higher strength and better creep resistance at higher temperature than 304. 316L Stainless Steel also possesses excellent mechanical properties and corrosion properties at sub-zero temperatures. When there is a danger of corrosion in the heat affected zones of weldments, the low-carbon variety 316L should be used. 316Ti, the titanium-stabilised version, is used for its resistance to sensitization during prolonged exposure in the 550 °C-800 °C temperature range.
316 316L (2% to 3% Mo) is the most widely used molybdenum-containing stainless steel. It is designated as a tank, pipe and heat exchanger material for food processing and pharmaceutical production. Increased molybdenum content enhances resistance to chloride in the air, so Type 316 can be used as a material of choice for offshore and coastal buildings. 316L is used to cover the Canary Wharf building in London and the tallest building in the world – the outer layer of the Petronas Tower in Kuala Lumpur, Malaysia.
What does the L mean?
L-grades have 0.035% carbon maximum. L-grades are resistant to sensitization in short-term exposures or heat treatments. L-grade often have slightly lower (typically 5,000 psi less) minimum strengths than standard stainless steel.
Chemical Composition ASME SA 213 316 /316L EN 10216-5 1.4401 1.4404
Grade | 316 | 316L | 1.4401 | 1.4404 |
UNS Designation | S31600 | S31603 | ||
Carbon (C) Max. | 0.08 | 0.035 | 0.07 | 0.030 |
Manganese (Mn) Max. | 2.00 | 2.00 | 2.00 | 2.00 |
Phosphorous (P) Max. | 0.045 | 0.045 | 0.040 | 0.040 |
Sulphur (S) Max. | 0.030 | 0.030 | 0.015 | 0.015 |
Silicon (Si) Max. | 1.00 | 1.00 | 1.00 | 1.00 |
Chromium (Cr) | 16.0 – 18.0 | 16.0 – 18.0 | 16.5 – 18.5 | 16.5 – 18.5 |
Nickel (Ni) | 10.0 – 14.0 | 10.0 – 14.0 | 10.0 – 13.0 | 10.0 – 13.0 |
Molybdenum (Mo) | 2.0 – 3.0 | 2.0 – 3.0 | 2.0 – 2.5 | 2.0 – 2.5 |
Nitrogen (N) Max. | – | – | 0.015 | 0.015 |
Iron (Fe) | Remainder | Remainder | Remainder | Remainder |
Other Elements | – | – | – | – |
* Maximum carbon content of 0.04% acceptable for drawn tubes
316/316L Stainless Steel Pipe Range
Alloy | UNS Designation | Werkstoff NR. | Specifications |
316 | S31600 | EN 10216 – 5 1.4401 | A269, A/SA249, A/SA312, A1016, A632, A/SA688 |
316L** | S31603 | EN 10216 – 5 1.4404 | A269, A/SA249, A/SA312, A1016, A632, A/SA688 |
**Available with electropolished ID’s for ultra purity applications.
Heat Treatment Requirements
Grade | UNS Designation | Heat Treat Type | Austenitizing/ Solutioning Temperature, min or range °F [°C] | Cooling Media | ASTM Grain Size No. B |
TP304 | S30400 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP304L | S30403 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP304H | S30409 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | 7 |
TP309S | S30908 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP309H | S30909 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | 7 |
TP310S | S31008 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP310H | S31009 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | 7 |
TP316 | S31600 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP316L | S31603 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP316H | S31609 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | 7 |
TP317 | S31700 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP317L | S31703 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP321 | S32100 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP321H | S32109 | Solution treatment | cold worked:2000[1090] hot rolled: 1925 [1050]H | water or another rapid cool | 7 |
TP347 | S34700 | Solution treatment | 1900 °F [1040 °C] | water or another rapid cool | . . . |
TP347H | S34709 | Solution treatment | cold worked:2000[1100] hot rolled: 1925 [1050]H | water or another rapid cool | 7 |
TP444 | S44400 | subcritical anneal | . . . | . . . | . . . |
Referenced Documents
1 Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.10 on Stainless and Alloy Steel Tubular Products. Current edition approved April 1, 2009. Published April 2009. Originally approved in 1939. Last previous edition approved in 2009 as A 213/A 213M – 09.
2 For ASME Boiler and Pressure Vessel Code applications see related Specification SA-213 in Section II of that Code.
ASTM A262 Practices for Detecting Susceptibility to Intergranu lar Attack in Austenitic Stainless Steel
A 941 Terminology Relating to Steel, Stainless Steel, Re lated Alloys, and Ferroalloys
A 1016/A 1016M Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
ASTM E112 Test Methods for Determining Average Grain Size
Nominal Pipe Size (NPS): 1/8, 1/4, 3/8, 1/2, 3/4, 1, 1 1/4, 1 1/2, 2, 2 1/2 inch
Outside Diameter: 10,3 – 73 mm (0,405 – 2,875 inch)
Wall Thickness: 1,24 – 7,01 (0,049 – 0,276 inch)
Tensile Requirements
Grade | UNS | Tensile Strength, Min. Ksi [MPa] | Yield Strength, min. Ksi [MPa] | Elongation in 2 in. or50 mm, min, % A, B | Hardness, Max | |
Designation | Brinell / Vickers | Rockwell | ||||
TP304 | S30400 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP304L | S30403 | 70 [485] | 25 [170] | 35 | 192HBW/200Hv | 90HB |
TP304H | S30409 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP304N | S30415 | 80 [550] | 35 [240] | 35 | 192HBW/200Hv | 90HB |
TP310S | S31008 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP310H | S31009 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP316 | S31600 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP316L | S31603 | 70 [485] | 25 [170] | 35 | 192HBW/200Hv | 90HB |
TP316H | S31609 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP316Ti | S31635 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP317 | S31700 | 75 [515] | 30 [205] | 34 | 192HBW/200Hv | 90HB |
TP317L | S31703 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP321 | S32100 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP321H | S32109 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP347 | S34700 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP347H | S34709 | 75 [515] | 30 [205] | 35 | 192HBW/200Hv | 90HB |
TP444 | S44400 | 60 [415] | 40 [275] | 20 | 217 HBW/230HV | 96HB |
Flattening Test
One flattening test shall be made on specimens from each end of one finished tube, not the one used for the flaring test, from each lot.
Flaring Test
One flaring test shall be made on specimens from each end of one finished tube, not the one used for the flattening test, from each lot.
Hydrostatic or Nondestructive Testing
Each pipe shall be subjected to the nondestructive electric test or the hydrostatic test, the type of test to be used shall be at the option of the manufacturer, unless otherwise specified in the purchase order.
Markings
Markings will adhere to prescribed specifications in A999/A999M and shall include the NPS or OD and schedule number or average wall thickness, heat number, and NH (when hydrotesting is not performed) and ET (when eddy-current testing is performed) or UT (when ultrasonic testing is performed). The marking shall also include the manufacturer’s private identifying mark, the marking requirement of section 12.3 on Hydrostatic or Nondestructive Electric Test, if applicable, and whether seamless (SML), welded (WLD), or heavily cold-worked (HCW). For Grades TP304H, TP316H, TP321H & TP347H, the marking shall also include the heat number and heat-treatment lot identification.
Note:
- Mill test certificates will be issued according to EN10204.3.
- All tubes shall be supplied as per applicable ASTM A213 /A213M Specification.
Notes:
- Steel Grades – TP 304, TP 304L, TP 316, TP 316L, TP 321
- Technical requirements acc. to ASTM A 450.
- Size of pipes in accordance with ANSI/ASME B36.19M.
- The quality of pipes is ensured by manufacturing process and non-destructive test.
- Hardness of metal not less than 100 HB.
- Length tolerance of measured pipes not greater than +10 mm.
- Monitoring of continuity of metal by pneumotest with pressure of 6 bar is available.
- Intergranular corrosion test in accordance with ASTM A262, Practice E is available.